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Abstract: This paper presents a Biogeography-Based Optimization 
(BBO) algorithm to solve various types of Economic Load Dispatch 
(ELD) problems of the thermal power plants in a power system. The 
proposed methodology can handle economic load dispatch problems 
having constraints like transmission losses, prohibited operating 
zones, etc. Biogeography basically is the science of geographically 
distribution of the biological species. The mathematical model of the 
biogeography describes the process how species arise, migrate from 
one place to another and gets vanish. This methodology has some 
common features with other biogeography based optimization 
methods like Genetic algorithm (GA), Particles swarm optimization 
(PSO). This algorithm search the global optimum value through two 
steps: Migration and Mutation. The effectiveness of the proposed 
methodology has been verified with some test systems. Considering 
the quality of the solution of the different problems obtained, this 
method seems to be better than other optimization methods. 
 
 Index Terms: Biogeography-based optimization, economic load 
dispatch, genetic algorithm, particle swarm optimization, prohibited 
operating zones. 

1. INTRODUCTION 

ECONOMIC load dispatch (ELD) seeks “the best” generation 
schedule for the generating plants to supply the required 
demand plus transmission losses at minimum production cost. 
The ELD may be formulated as a nonlinear constrained 
problem. The convex ELD problem assumes quadratic cost 
function along with system power demand and operational 
limit constraints. The practical non-convex ELD (NCELD) 
problem, in addition, considers generator nonlinearities such 
as valve point loading effects, prohibited operating zones, 
ramp rate limits, and multi-fuel options. For these types of 
problems a new methodology using Biogeography is being 
introduced in the optimization process. 

The science of biogeography can be traced to the work of 
nineteenth century naturalists such as Alfred Wallace and 
Charles Darwin. The application of biogeography to 
engineering is similar to what has occurred in the past few 
decades with genetic algorithms (GAs), neural networks, 
fuzzy logic, particle swarm optimization (PSO), and other 
areas of computer intelligence. Various investigations on 
Economic Load Dispatch have been undertaken until date, as 

better solutions would result in significant economical 
benefits. Previously a number of derivative-based approaches 
including Lagrangian multiplier method [1] have been applied 
to solve ELD problems. But these methods require that 
incremental cost curves are monotonically increasing in 
nature. The calculus-based methods fail in solving these types 
of problems. Wood and Wollenberg proposed dynamic 
programming [2], which does not impose any restriction on 
the nature of the cost curves and solves both convex and non-
convex ELD problems. But this method suffers from the curse 
of dimensionality and simulation time increases rapidly with 
the increase of system size. The application of artificial 
intelligence technology for solution of ELD problems such as 
genetic algorithm (GA) [3]; artificial neural networks [4]; 
simulated annealing (SA), Tabu search; evolutionary 
programming [5]; particle swarm optimization (PSO) [6]; ant 
colony optimization; differential evolution [7]; etc. have been 
developed. The SA method is usually slower than the GA 
method because the GA has parallel search capabilities. 
However, research has identified some deficiencies in 
application to highly epistatic objective functions where the 
parameters being optimized are strongly correlated. In PSO 
there are only a few parameters to be adjusted, which make 
PSO more attractive. But once inside the optimum region, the 
algorithm progresses slowly due to its inability to adjust the 
velocity step size to continue the search at a finer grain. 

Very recently, a new optimization concept, based on 
biogeography, has been proposed by Simon [8]. Biogeography 
is the nature’s way of distributing species. Mathematical 
models of biogeography describe how species migrate from 
one island to another, how new species arise, and how species 
become extinct. An island is any habitat that is geographically 
isolated from other habitats. Geographical areas that are well 
suited as residences for biological species are said to have a 
high habitat suitability index (HSI). Features that correlate 
with HSI include such factors as rainfall, diversity of 
vegetation, diversity of topographic features, land area, and 
temperature. The variables that characterize habitability are 
called suitability index variables (SIVs). SIVs can be 
considered the independent variables of the habitat, and HSI 
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can be considered the dependent variable. Let us consider an 
optimization problem with some trial solutions of it. In BBO, 
a good solution is analogous to an island with a high Habitat 
Suitability Index (HSI), and a poor solution represents an 
island with a low HSI. High HSI solutions resist change more 
than low HSI solutions. Low HSI solutions tend to copy good 
features from high HSI solutions. The shared features remain 
in the high HSI solutions, while at the same time appearing as 
new features in the low HSI solutions. BBO works based on 
the two mechanisms: migration and mutation. BBO, as in 
other biology-based algorithms like GA and PSO, has the 
property of sharing information between solutions. 

 

Fig. 1: Species model of a Single Habitat 

Fig. 1 illustrates a model of species abundance in a single 
habitat. The immigration rate λ and the emigration rate µ are 
functions of the number of species in the habitat. 

Consider the immigration curve. The maximum possible 
immigration rate to the habitat is I, which occurs when there 
are zero species in the habitat. As the number of species 
increases, the habitat becomes more crowded, fewer species 
are able to successfully survive immigration to the habitat, and 
the immigration rate decreases. The largest possible number of 
species that the habitat can support is Smax, at which point the 
immigration rate becomes zero. If there are no species in the 
habitat then the emigration rate must be zero. As the number 
of species increases, the habitat becomes more crowded, more 
species are able to leave the habitat to explore other possible 
residences, and the emigration rate increases. The maximum 
emigration rate is E, which occurs when the habitat contains 
the largest number of species that it can support. The 
equilibrium number of species is So, at which point the 
immigration and emigration rates are equal. 

Now, consider the probability PS that the habitat contains 
exactly S species. PS changes from time t to time (t+∆t) as 
follows: 

𝑃𝑃𝑠𝑠(𝑡𝑡 + Δ𝑡𝑡) = 𝑃𝑃𝑠𝑠(𝑡𝑡)(1 − 𝜆𝜆𝑠𝑠Δ𝑡𝑡 − 𝜇𝜇𝑠𝑠Δ𝑡𝑡) + 𝑃𝑃𝑠𝑠−1𝜆𝜆𝑠𝑠−1Δ𝑡𝑡 +
𝑃𝑃𝑠𝑠+1𝜇𝜇𝑠𝑠+1Δ𝑡𝑡 (1) 

where λs

µ

 = immigration rates 

s

2. BIOGEOGRAPHY BASED OPTIMIZATION (BBO) 

 = emigration rates 

To have species at time t, one of the following conditions must 
hold: 

1) there were S species at time t, and no immigration or 
emigration occurred between t and (t+∆t); 

2) there were (S-1) species at time t, and one species 
immigrated; 

3) there were (S+1) species at time t, and one species 
emigrated. 

We assume that ∆t is small enough so that the probability of 
more than one immigration or emigration can be ignored. 
Taking the limit ∆t→0 of (1) as gives equation (2) 

 

𝑃𝑃𝑠𝑠.

= �
−(𝜆𝜆𝑠𝑠 + 𝜇𝜇𝑠𝑠)𝑃𝑃𝑠𝑠 + 𝜇𝜇𝑠𝑠+1𝑃𝑃𝑠𝑠+1,   𝑆𝑆 = 0

−(𝜆𝜆𝑠𝑠 + 𝜇𝜇𝑠𝑠)𝑃𝑃𝑠𝑠 + 𝜆𝜆𝑠𝑠−1𝑃𝑃𝑠𝑠−1 + 𝜇𝜇𝑠𝑠+1𝑃𝑃𝑠𝑠+1, 1 ≤ 𝑆𝑆 ≤ 𝑆𝑆𝑚𝑚𝑎𝑎𝑎𝑎 − 1
−(𝜆𝜆𝑠𝑠 + 𝜇𝜇𝑠𝑠)𝑃𝑃𝑠𝑠 + 𝜆𝜆𝑠𝑠−1𝑃𝑃𝑠𝑠−1     𝑆𝑆 = 𝑆𝑆𝑚𝑚𝑎𝑎𝑎𝑎

� 

 (2) 

In this section, we discuss how the biogeography theory can 
be applied to optimization problems with a discrete domain. 
BBO concept is based on the two major steps, e.g., migration 
and mutation as discussed below. 

Migration 

The emigration and immigration rates of each solution are 
used to probabilistically share information between habitats. 
With probability Pmod, known as habitat modification 
probability, each solution can be modified based on other 
solutions. According to BBO if a given solution Si is selected 
for modification, then its immigration rate λ is used to 
probabilistically decide whether or not to modify each 
suitability index variable (SIV) in that solution. After selecting 
the SIV for modification, emigration rates µ of other solutions 
are used to select which solutions among the habitat set will 
migrate randomly chosen SIVs to the selected solution Si

It is well known that due to some natural calamities or other 
events HSI of natural habitat might get changed suddenly. In 
BBO such an event is represented by mutation of SIV and 

. In 
order to prevent the best solutions from being corrupted by 
immigration process, some kind of elitism is kept in BBO 
algorithm. Here, best habitat sets, i.e., those habitats whose 
HSI are best, are kept as it is without migration operation after 
each iteration. This operation is known as elitism operation. 

Mutation 
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species count probabilities are used to determine mutation 
rates. The probabilities of each species count can be calculated 
using the differential equation of (2). Mutation rate of each set 
of solution can be calculated in terms of species count 
probability using the following equation: 

𝑚𝑚(𝑆𝑆) = 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎 �
1−𝑃𝑃𝑠𝑠
𝑃𝑃𝑚𝑚𝑎𝑎𝑎𝑎

�        (3) 
where mmax

To apply BBO on ELD problems first we have to design the 
problem using related parameters. 

 is a user-defined parameter. This mutation scheme 
tends to increase diversity among the habitats. Without this 
modification, the highly probable solutions will tend to be 
more dominant in the total habitat. This mutation approach 
makes both low and high HSI solutions likely to mutate, which 
gives a chance of improving both types of solutions in 
comparison to their earlier value. 

The objective function Ft

𝐹𝐹𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚(∑ 𝐹𝐹𝑚𝑚(𝑃𝑃𝑚𝑚)𝑚𝑚
𝑚𝑚=1 )  

 of ELD problem may be written as 

 = 𝑚𝑚𝑚𝑚𝑚𝑚(∑ 𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑃𝑃𝑚𝑚 + 𝑐𝑐𝑚𝑚𝑃𝑃𝑚𝑚2𝑚𝑚
𝑚𝑚=1 ) (4) 

where Fi(Pi) is the ith generator’s cost function, and is usually 
expressed as a quadratic polynomial; ai, bi, ci and are the cost 
coefficients of the ith generator; m is the number of committed 
generators to the power system; Pi is the power output of the 
ith generator. The ELD problem consists in minimizing Ft

Real Power Balance Constraint: 

 
subject to the following constraints 

∑ 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝐷𝐷 − 𝑃𝑃𝐿𝐿 = 0𝑚𝑚
𝑚𝑚=1   (5) 

The transmission loss PL

As 

 may be expressed using B-
coefficients 

𝑃𝑃𝐿𝐿 = ∑ ∑ 𝑃𝑃𝑚𝑚𝐵𝐵𝑚𝑚𝑖𝑖 𝑃𝑃𝑖𝑖 + ∑ 𝐵𝐵0𝑚𝑚𝑃𝑃𝑚𝑚 + 𝐵𝐵00
𝑚𝑚
𝑚𝑚=1

𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑚𝑚=1  (6) 

Generator Capacity Constraints: The power generated by 
each generator shall be within their lower limit Pi

min and upper 
limit Pi

max

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑚𝑚 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎  (7) 

. So that 

BBO Algorithm for ELD Problem 

In this section, a new approach to implement the BBO 
algorithm will be described for solving the ELD problems. 
The process of the BBO algorithm can be summarized as 
follows. 

1) Representation of the SIV: Since the decision variables for 
the ELD problems are real power generations, they are 
used to represent individual habitat. The real power 
output of all generators is represented as the SIV in a 
habitat. For initialization, choose number of SIV of BBO 
algorithm m, number of habitat N. 
The complete habitat set is represented in the form of the 
following matrix: 

.H = [H1 H2 H3. . . . . . Hi. . . . . . HN

2) Initialization of the SIV: Each element of the Habitat 
matrix, i.e., each SIV of a given habitat set , is initialized 
randomly within the effective real power operating limits. 

 ] 
 

3) Calculate the HSI for each habitat set of the total habitat 
set for given emigration rate λ, immigration rate µ. HSI 
represent the fuel cost of the generators in the power 
system for a particular power demand. Here, HSIi

4) Based on the HSI (fuel cost in case of ELD problem), 
value elite habitats are identified. Here elite term is used 
to indicate those habitat sets of generator power output, 
which give best fuel cost. 

 
indicates the fuel cost due to the ith set of generation 
value (i.e., ith set of habitat matrix H) in $/h. 

5) Probabilistically perform migration operation on those 
SIVs of each non-elite habitats, selected for migration. 

6) Species count probability of each habitat is updated using 
(2). Mutation operation is performed on the non-elite 
habitat. If mutation rate as calculated using (3) of any 
habitat is greater than a randomly generated number, then 
that habitat is selected for mutation. 

7) Go to step 3) for the next iteration. This loop can be 
terminated after a predefined number of iterations. 

3. NUMERICAL EXAMPLE & SIMULATION 
RESULT 

A simple system with ten thermal units is considered here. The 
input data are taken from [9]. The load demand is 2700 MW. 
Transmission loss has not been considered here. The result 
obtained from the proposed BBO, different PSO techniques 
[10], and different GA [9] methods are shown in Table I at the 
next page. 

4. CONCLUSION 

 The BBO method has been successfully implemented to solve 
different ELD problems with the generator constraints. The 
BBO algorithm has the ability to find the better quality 
solution and has better convergence characteristics, 
computational efficiency, and robustness. It is clear from the 
results obtained by different trials that the proposed BBO 
method has good convergence property and can avoid the 
shortcoming of premature convergence of other optimization 
techniques to obtain better quality solution. Due to these 
properties, the BBO method in the future can be tried for 
solution of complex unit commitment, dynamic ELD 
problems in the search of better quality results. 
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TABLE I : BEST POWER OUTPUTS FOR TEN- GENERATOR 
SYSTEM (PL

Unit 
Power 
Output 

=2700MW) 

BBO NPSO-
LRS 
[10] 

NPSO[1
0] 

PSO-
LRS 
[10] 

IGA_
MU [9] 

CGA_
MU [9] 

P1 
(MW) 

214.56 223.33 220.657 219.01
5 

219.126 222.01
0 

P2 
(MW) 

210.48 212.19 211.785 213.89
0 

211.164 211.63
5 

P3 
(MW) 

333.78 276.21 280.402 283.76
1 

280.657 283.94
5 

P4 
(MW) 

271.32 239.41 238.601 237.26
8 

238.477 237.80
5 

P5 
(MW) 

238.89 274.64 277.562 286.01
6 

276.417 280.44
8 

P6 
(MW) 

270.51 239.79 239.120 239.39
8 

240.467 236.03
3 

P7 
(MW) 

281.12 285.53 292.139 291.17
6 

287.739 292.04
9 

P8 
(MW) 

239.12 240.63 239.153 241.43
9 

240.761 241.97
0 

P9 
(MW) 

415.97 429.26 426.114 416.97
2 

429.337 424.20
1 

P10 
(MW) 

268.65 278.65 274.463 271.06
2 

275.851 269.90
0 

Total 
Cost 
($/h) 

607.98 624.127
3 

624.162
4 

624.22
9 

624.517
8 

624.71
9 

Mean 
CPU 
Time 
(sec.) 

0.90 0.52 0.35 0.88 7.25 26.17 
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